Navicular stress fractures (NSF) can be difficult injuries to diagnose and can end up career in athletes. The lack of blood supply to the navicular bone makes this injury difficult to heal and confoundingly gives minimal visible symptoms such as swelling and bruising.

Keywords: Foot and ankle, Navicular bone, Navicular stress fractures.

Journal of Foot and Ankle Surgery (Asia Pacific) (2020): 10.5005/jp-journals-10040-1127

Navicular stress fractures (NSF) can be difficult injuries to diagnose and can end up career in athletes.1,2 The lack of blood supply to the navicular bone makes this injury difficult to heal and confoundingly gives minimal visible symptoms such as swelling and bruising.3,4 Many patients, such as basketball players and dancers, complain of symptoms only when they are jumping or on their toes. This is why athletes relate they can jog but not sprint without pain and can therefore be difficult to diagnose early on.5–10 In fact, one study showed on average it took almost 9 months to arrive at the correct diagnosis.6 Furthermore, despite magnetic resonance imaging (MRI) being a more common diagnostic test, it was helpful in correctly diagnosing NSF in 71% of patients, whereas computed tomography (CT) was 100% correlated with a correct diagnosis6 (Fig. 1).

According to Fitch et al., NSF was first recognized by Towne et al. in 1970.4,11 Patients typically have pain in the midfoot, including the “N-spot” that is the high point of the navicular as well as vague anterior ankle and arch pain.4,6,8 As noted previously, there is minimal swelling and bruising. This injury can occur after an ankle or midfoot sprain.6 Treatment from the 1970s time period until the end of the 1990s primarily involved nonsurgical care with a period of nonweight-bearing of 6–8 weeks in a below-knee cast.4,7,9,11 In 2000, Saxena et al. published their early results using a classification system using CT frontal plane images with ≤0.6 mm slices. They described three stages of injury with progressive severity: type I, II, and III (Table 1). These authors added another less severe stage in 2011 termed type 0.5, which is essentially a stress reaction seen on MRI with no fracture identified via CT (12).

Table 1: Computed tomography Classification of navicular stress fractures (using ≤0.6 mm cuts in frontal plane)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 0.5</td>
<td>CT negative for fracture, MRI positive for signal change within body of navicular</td>
</tr>
<tr>
<td>Type I</td>
<td>CT shows dorsal cortical fracture</td>
</tr>
<tr>
<td>Type II</td>
<td>CT shows fracture propagates into mid-portion of navicular</td>
</tr>
<tr>
<td>Type III</td>
<td>CT shows complete fracture through navicular</td>
</tr>
</tbody>
</table>

Based on Ref. 3 and 12

Figs 1A and B: (A) Magnetic resonance imaging of navicular stress fracture failing to demonstrate fracture; (B) Computed tomography of same patient demonstrating type II navicular stress fractures

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Navicular stress fractures are significant injuries that involve significant downtime, possibly a loss of a season or worse. A provider should have a high index of suspicion for an athlete with persistent vague, atraumatic midfoot, or anterior ankle pain, particularly in the “N-spot.” The consequence of missing this diagnosis and proper treatment is further downtime and poorer outcome, including re-fracture, arthrosis, and cessation of activity. Anecdotally, this author has seen associated medial ankle impingement with some cases of NSF. This association should be further studied. CT with ≤0.6-mm cuts should be used to determine the type of injury. As of now, the proposed treatment recommendations of nonsurgical for types 0.5 and acute type I and ORIF for types II and III appear well supported in the literature. ESWT’s role in accelerating healing appears favorable and deserves more research.

REFERENCES