Journal of Foot and Ankle Surgery (Asia Pacific)

Register      Login

VOLUME 11 , ISSUE 4 ( October-December, 2024 ) > List of Articles

REVIEW ARTICLE

Osteochondral Lesion of Talus: Role of Bone Marrow Aspirate Concentrate and Microfracture—What Does the Current Literature Say?

Prateek Behera, Nitu Mishra, John Ashutosh Santoshi

Keywords : Osteochondral lesion, Talus, Osteochondritis dissecans, BMAC, PRP

Citation Information : Behera P, Mishra N, Santoshi JA. Osteochondral Lesion of Talus: Role of Bone Marrow Aspirate Concentrate and Microfracture—What Does the Current Literature Say?. J Foot Ankle Surg Asia-Pacific 2024; 11 (4):177-181.

DOI: 10.5005/jp-journals-10040-1365

License: CC BY-NC 4.0

Published Online: 20-09-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Osteochondral lesions (OCL) are increasingly being identified at present. These lesions include both osteochondritis dissecans (OCD) and osteochondral fractures. Improved diagnostic modalities, like magnetic resonance imaging (MRI), have become more effective in accurately identifying and quantifying these lesions. While lesions that are small and have some attachment with the rest of the bone respond well to nonoperative treatment, those that are larger in size and those who have failed a trial of nonoperative treatment are recommended to undergo surgical management. Many surgical options have been described. Of these, microfracture (MF) has been extensively used. This procedure results in the release of bone marrow and stimulation of cells to produce fibrocartilage. Additionally, orthobiologics like platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC) have been used to further enhance the healing response. This review attempts to bring forth the available literature on the use of MF and BMAC in the treatment of OCL.


PDF Share
  1. Reddy Y. Biologic augmentation in osteochondral lesions of the talus. Bone Bulletin 2023;1(1):8.
  2. Zwingmann J, Südkamp NP, Schmal H, et al. Surgical treatment of osteochondritis dissecans of the talus: a systematic review. Arch Orthop Trauma Surg 2012;132:1241–1250. DOI: 10.1007/s00402-012-1544-1
  3. Bruns J, Habermann C, Werner M. Osteochondral lesions of the talus: a review on talus osteochondral injuries, including osteochondritis dissecans. Cartilage 2021;13:1380S–1401S. DOI: 10.1177/1947603520985182
  4. Berndt AL, Harty M. Transchondral fractures of the talus. J Bone Jt Surg 1959;41:988–1020.
  5. Zanon G, Di Vico G, Marullo M. Osteochondritis dissecans of the talus. Joints 2014;2:115–123. DOI: 10.11138/jts/2014.2.3.115
  6. Kessler JI, Weiss JM, Nikizad H, et al. Osteochondritis dissecans of the ankle in children and adolescents: demographics and epidemiology. Am J Sports Med 2014;42:2165–2171. DOI: 10.1177/0363546514538406
  7. Orr JD, Dutton JR, Fowler JT. Anatomic location and morphology of symptomatic, operatively treated osteochondral lesions of the talus. Foot Ankle Int 2012;33:1051–1057. DOI: 10.3113/FAI.2012.1051
  8. Raikin SM, Elias I, Zoga AC, et al. Osteochondral lesions of the talus: Localization and morphologic data from 424 patients using a novel anatomical grid scheme. Foot Ankle Int 2007;28:154–161. DOI: 10.3113/FAI.2007.0154
  9. Irwin RM, Shimozono Y, Yasui Y, et al. Incidence of coexisting talar and tibial osteochondral lesions correlates with patient age and lesion location. Orthop J Sport Med 2018;6:1–8.
  10. Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 2001;391:362–369. DOI: 10.1097/00003086-200110001-00033
  11. Steadman JR, Rodkey WG, Briggs KK. Microfracture: its history and experience of the developing surgeon. Cartilage 2010;1:78–86. DOI: 10.1177/1947603510365533
  12. Steman JAH, Dahmen J, Lambers KTA, et al. Return to sports after surgical treatment of osteochondral defects of the talus: a systematic review of 2347 cases. Orthop J Sport Med 2019;7:1–15. DOI: 10.1177/2325967119876238
  13. Donnenwerth MP, Roukis TS. Outcome of arthroscopic debridement and microfracture as the primary treatment for osteochondral lesions of the talar dome. J Arthrosc Relat Surg 2012;28:1902–1907. DOI: 10.1016/j.arthro.2012.04.055
  14. Woo I, Park JJ, Seok HG. The efficacy of platelet-rich plasma augmentation in microfracture surgery osteochondral lesions of the talus: a systematic review and meta-analysis. J Clin Med 2023;12. DOI: 10.3390/jcm12154998
  15. Basciani S, Longo UG, Papalia GF, et al. Arthroscopic microfracture and associated techniques in the treatment of osteochondral lesions of the talus: a systematic review and metanalysis. Foot Ankle Surg 2024;30(3):219–225. DOI: 10.1016/j.fas.2023.12.005
  16. Kimball JS, Ferkel RD, Ferkel EI. Regeneration: bone–marrow stimulation of the talus–limits and goals. Foot Ankle Clin 2024;29(2):281–290. DOI: 10.1016/j.fcl.2024.01.001
  17. Imam MA, Mahmoud SSS, Holton J, et al. A systematic review of the concept and clinical applications of bone marrow aspirate concentrate in orthopaedics. SICOT J 2017;3:17. DOI: 10.1051/sicotj/2017007
  18. Imam MA, Holton J, Ernstbrunner L, et al. A systematic review of the clinical applications and complications of bone marrow aspirate concentrate in management of bone defects and nonunions. Int Orthop 2017;41:2213–2220. DOI: 10.1007/s00264-017-3597-9
  19. Murawski CD, Kennedy JG. Bone marrow aspirate concentrate and platelet-rich plasma as biological adjuncts to the surgical treatment of osteochondral lesions of the talus. Tech Orthop 2011;26:22–27.
  20. Pagliazzi G, Baldassarri M, Perazzo L, et al. Tissue bioengineering in the treatment of osteochondritis dissecans of the talus in children with open physis: preliminary results. J Pediatr Orthop 2018;38:375–381. DOI: 10.1097/BPO.0000000000000827
  21. Giannini S, Buda R, Vannini F, et al. Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: surgical technique and results. Am J Sports Med 2008;36:873–880. DOI: 10.1177/0363546507312644
  22. Giannini S, Buda R, Battaglia M, et al. One-step repair in talar osteochondral lesions: 4-year clinical results and T2-mapping capability in outcome prediction. Am J Sports Med 2013;41:511–518. DOI: 10.1177/0363546512467622
  23. Buda R, Vannini F, Castagnini F, et al. Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop 2015;39:893–900. DOI: 10.1007/s00264-015-2685-y
  24. Kennedy JG, Murawski CD. The treatment of osteochondral lesions of the talus with autologous osteochondral transplantation and bone marrow aspirate concentrate: Surgical technique. Cartilage. 2011;2:327–336. DOI: 10.1177/1947603511400726
  25. Chahla J, Cinque ME, Schon JM, et al. Bone marrow aspirate concentrate for the treatment of osteochondral lesions of the talus: a systematic review of outcomes. J Exp Orthop 2016;3:33. DOI: 10.1186/s40634-016-0069-x
  26. Abas S, Kuiper JH, Roberts S, et al. Osteochondral lesions of the ankle treated with bone marrow concentrate with hyaluronan and fibrin: a single-centre study. Cells 2022;11:1–17. DOI: 10.3390/cells11040629
  27. Klein C, Dahmen J, Emanuel KS, et al. Limited evidence in support of bone marrow aspirate concentrate as an additive to the bone marrow stimulation for osteochondral lesions of the talus: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2023;31:6088–6103. DOI: 10.1007/s00167-023-07651-1
  28. Allahabadi S, Johnson B, Whitney M, et al. Short-term outcomes following dehydrated micronized allogenic cartilage versus isolated microfracture for treatment of medial talar osteochondral lesions. Foot Ankle Surg 2022;28:642–649. DOI: 10.1016/j.fas.2021.07.012
  29. Drakos MC, DeSandis BA, Haleem A, et al. Comparison of juvenile allogenous articular cartilage and bone marrow aspirate concentrate versus microfracture in arthroscopic treatment of talar osteochondral lesions. Foot Ankle Orthop 2016;1:2473011416S0010.
  30. Drakos MC, Eble SK, Cabe TN, et al. Comparison of functional and radiographic outcomes of talar osteochondral lesions repaired with micronized allogenic cartilage extracellular matrix and bone marrow aspirate concentrate vs microfracture. Foot Ankle Int 2021;42:841–850. DOI: 10.1177/1071100720983266
  31. Hannon CP, Ross KA, Murawski CD, et al. Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthrosc J Arthrosc Relat Surg 2016;32:339–347. DOI: 10.1016/j.arthro.2015.07.012
  32. Karnovsky SC, DeSandis B, Haleem AM, et al. Comparison of juvenile allogenous articular cartilage and bone marrow aspirate concentrate versus microfracture with and without bone marrow aspirate concentrate in arthroscopic treatment of talar osteochondral lesions. Foot ankle Int 2018;39:393–405. DOI: 10.1177/1071100717746627
  33. Murphy EP, McGoldrick NP, Curtin M, et al. A prospective evaluation of bone marrow aspirate concentrate and microfracture in the treatment of osteochondral lesions of the talus. Foot Ankle Surg 2019;25:441–448. DOI: 10.1016/j.fas.2018.02.011
  34. Park C, Steele JR, Adams SB. Bone marrow stimulation plus bone marrow aspirate concentrate versus bone marrow stimulation alone in the treatment of osteochondral lesions of the talus: a prospective study. Duke Orthop J 2020;9(1):1–5.
  35. Tahta M, Akkaya M, Gursoy S, et al. Arthroscopic treatment of osteochondral lesions of the talus: nanofracture versus hyaluronic acid-based cell-free scaffold with concentration of autologous bone marrow aspirate. J Orthop Surg (Hong Kong) 2017;25:1–5. DOI: 10.1177/2309499017717870
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.