Journal of Foot and Ankle Surgery (Asia Pacific)

Register      Login

VOLUME 11 , ISSUE 4 ( October-December, 2024 ) > List of Articles

REVIEW ARTICLE

Unlocking the Potentials of Exosomes in Achilles Tendinitis

Naveen Jeyaraman, Madhan Jeyaraman, Swaminathan Ramasubramanian, Sangeetha Balaji, Sathish Muthu

Keywords : Achilles tendinitis, Exosomes, Inflammation, Mesenchymal stem cells, Regenerative medicine, Tendon healing

Citation Information : Jeyaraman N, Jeyaraman M, Ramasubramanian S, Balaji S, Muthu S. Unlocking the Potentials of Exosomes in Achilles Tendinitis. J Foot Ankle Surg Asia-Pacific 2024; 11 (4):161-168.

DOI: 10.5005/jp-journals-10040-1369

License: CC BY-NC 4.0

Published Online: 20-09-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Achilles tendinitis, a prevalent condition among athletes, is marked by inflammation and degeneration of the Achilles tendon due to factors such as overuse and mechanical overload. Current treatments are often limited in efficacy, prompting the exploration of novel therapeutic approaches. Exosomes, small extracellular vesicles released from cells, have emerged as promising agents for tendon healing due to their ability to transfer bioactive molecules and modulate cellular processes. This review examines the role of exosomes in the treatment of Achilles tendinitis, highlighting their anti-inflammatory, regenerative, and immunomodulatory properties. Exosomes derived from mesenchymal stem cells (MSCs) and tendon stem cells (TSCs) can reduce inflammation by modulating cytokine levels and suppressing proinflammatory pathways. They promote tenocyte proliferation, enhance extracellular matrix (ECM) synthesis, and improve tendon structure and function. Preclinical studies demonstrate significant benefits of exosome therapy, including reduced inflammation, improved collagen organization, and enhanced biomechanical properties of the tendon. Early clinical trials indicate that exosome-based therapies are safe and potentially effective, showing promise in reducing pain and improving tendon function. However, challenges such as standardizing exosome isolation and characterization, navigating regulatory pathways, and understanding long-term safety and efficacy must be addressed. Future research should focus on optimizing exosome sources, dosages, delivery methods, and exploring combination therapies to enhance therapeutic outcomes. Exosomes could revolutionize the management of Achilles tendinitis, offering a novel and effective treatment modality.


PDF Share
  1. Lagas IF, Fokkema T, Bierma-Zeinstra SMA, et al. How many runners with new-onset Achilles tendinopathy develop persisting symptoms? A large prospective cohort study. Scand J Med Sci Sports 2020;30(10):1939–1948. DOI: 10.1111/sms.13760
  2. Alrashidi Y, Fernandez-Marin MR, Galhoum A, et al. Achilles Tendon and Athletes. In: IntechOpen; 2018. DOI: 10.5772/intechopen.76237
  3. Ackermann PW, Renström P. Tendinopathy in sport. Sports Health 2012;4(3):193–201. DOI: 10.1177/1941738112440957
  4. Maffulli N, Sharma P, Luscombe KL. Achilles tendinopathy: aetiology and management. J R Soc Med 2004;97(10):472–476. DOI: 10.1258/jrsm.97.10.472
  5. He L, Yu T, Zhang W, et al. Causal associations of obesity with Achilles tendinopathy: a two-sample mendelian randomization study. Front Endocrinol (Lausanne) 2022;13:902142. DOI: 10.3389/fendo.2022.902142
  6. Ackermann PW, Phisitkul P, Pearce CJ. Achilles tendinopathy—pathophysiology: state of the art. J ISAKOS 2018;3(5):304–314. DOI: 10.1136/jisakos-2017-000164
  7. Klatte-Schulz F, Minkwitz S, Schmock A, et al. Different Achilles tendon pathologies show distinct histological and molecular characteristics. Int J Mol Sci 2018;19(2):404. DOI: 10.3390/ijms19020404
  8. van der Vlist AC, Breda SJ, Oei EHG, et al. Clinical risk factors for Achilles tendinopathy: a systematic review. Br J Sports Med 2019;53(21):1352–1361. DOI: 10.1136/bjsports-2018-099991
  9. Li HY, Hua YH. Achilles tendinopathy: current concepts about the basic science and clinical treatments. BioMed Res Int 2016;2016:6492597. DOI: 10.1155/2016/6492597
  10. Chen XM, Wang X, Hou Z. Editorial: MSC-derived exosomes in tissue regeneration. Front Cell Dev Biol 2023;11:1293109. DOI: 10.3389/fcell.2023.1293109
  11. Zhang Y, Liu Y, Liu H, et al. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 2019;9:19. DOI: 10.1186/s13578-019-0282-2
  12. Muthu S, Bapat A, Jain R, et al. Exosomal therapy—a new frontier in regenerative medicine. Stem Cell Investig 2021;8:7. DOI: 10.21037/sci-2020-037
  13. Wang Y, He G, Guo Y, et al. Exosomes from tendon stem cells promote injury tendon healing through balancing synthesis and degradation of the tendon extracellular matrix. J Cell Mol Med 2019;23(8):5475–5485. DOI: 10.1111/jcmm.14430
  14. Del Buono A, Chan O, Maffulli N. Achilles tendon: functional anatomy and novel emerging models of imaging classification. Int Orthop 2013;37(4):715–721. DOI: 10.1007/s00264-012-1743-y
  15. Yu C, Deng L, Li L, et al. Exercise effects on the biomechanical properties of the Achilles tendon—a narrative review. Biology (Basel) 2022;11(2):172. DOI: 10.3390/biology11020172
  16. Fenwick SA, Hazleman BL, Riley GP. The vasculature and its role in the damaged and healing tendon. Arthritis Res 2002;4(4):252–260. DOI: 10.1186/ar416
  17. Abate M, Silbernagel KG, Siljeholm C, et al. Pathogenesis of tendinopathies: inflammation or degeneration? Arthritis Res Ther 2009;11(3):235. DOI: 10.1186/ar2723
  18. Knapik JJ, Pope R. Achilles tendinopathy: pathophysiology, epidemiology, diagnosis, treatment, prevention, and screening. J Spec Oper Med 2020;20(1):125–140. DOI: 10.55460/QXTX-A72P
  19. Kader D, Saxena A, Movin T, et al. Achilles tendinopathy: some aspects of basic science and clinical management. Br J Sports Med 2002;36(4):239–249. DOI: 10.1136/bjsm.36.4.239
  20. Schulze-Tanzil G, Al-Sadi O, Wiegand E, et al. The role of pro-inflammatory and immunoregulatory cytokines in tendon healing and rupture: new insights. Scand J Med Sci Sports 2011;21(3):337–351. DOI: 10.1111/j.1600-0838.2010.01265.x
  21. Gaida JE, Alfredson H, Forsgren S, et al. A pilot study on biomarkers for tendinopathy: lower levels of serum TNF-α and other cytokines in females but not males with Achilles tendinopathy. BMC Sports Sci Med Rehabil 2016;8:5. DOI: 10.1186/s13102-016-0026-0
  22. Morita W, Dakin SG, Snelling SJB, et al. Cytokines in tendon disease: a systematic review. Bone Joint Res 2017;6(12):656–664. DOI: 10.1302/2046-3758.612.BJR-2017-0112.R1
  23. Ellis I, Schnabel LV, Berglund AK. Defining the profile: characterizing cytokines in tendon injury to improve clinical therapy. J Immunol Regen Med 2022;16:100059. DOI: 10.1016/j.regen.2022.100059
  24. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977
  25. Krylova SV, Feng D. The machinery of exosomes: biogenesis, release, and uptake. Int J Mol Sci 2023;24(2):1337. DOI: 10.3390/ijms24021337
  26. Xie S, Zhang Q, Jiang L. Current knowledge on exosome biogenesis, cargo-sorting mechanism and therapeutic implications. Membranes 2022;12(5):498. DOI: 10.3390/membranes12050498
  27. Roszkowski S. Therapeutic potential of mesenchymal stem cell-derived exosomes for regenerative medicine applications. Clin Exp Med 2024;24(1):46. DOI: 10.1007/s10238-023-01282-z
  28. Console L, Scalise M, Indiveri C. Exosomes in inflammation and role as biomarkers. Clin Chim Acta 2019;488:165–171. DOI: 10.1016/j.cca.2018.11.009
  29. Wan R, Hussain A, Behfar A, et al. The therapeutic potential of exosomes in soft tissue repair and regeneration. Int J Mol Sci 2022;23(7):3869. DOI: 10.3390/ijms23073869
  30. Basu J, Ludlow JW. Exosomes for repair, regeneration and rejuvenation. Expert Opin Biol Ther 2016;16(4):489–506. DOI: 10.1517/14712598.2016.1131976
  31. Lee Y, El Andaloussi S, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012;21(R1):R125–R134. DOI: 10.1093/hmg/dds317
  32. Schwarzenbach H, Gahan PB. Exosomes in immune regulation. Noncoding RNA 2021;7(1):4. DOI: 10.3390/ncrna7010004
  33. Kim DS, Lee G, Cho H, et al. Regenerative medicine in South Korea: bridging the gap between authorization and reimbursement. Front Bioeng Biotechnol 2021;9:737504. DOI: 10.3389/fbioe.2021.737504
  34. Wang C, Xu M, Fan Q, et al. Therapeutic potential of exosome-based personalized delivery platform in chronic inflammatory diseases. Asian J Pharm Sci 2023;18(1):100772. DOI: 10.1016/j.ajps.2022.100772
  35. Zou M, Wang J, Shao Z. Therapeutic potential of exosomes in tendon and tendon–bone healing: a systematic review of preclinical studies. J Funct Biomater 2023;14(6):299. DOI: 10.3390/jfb14060299
  36. Xu T, Lin Y, Yu X, et al. Comparative effects of exosomes and ectosomes isolated from adipose-derived mesenchymal stem cells on Achilles tendinopathy in a rat model. Am J Sports Med 2022;50(10):2740–2752. DOI: 10.1177/03635465221108972
  37. Chamberlain CS, Clements AEB, Kink JA, et al. Extracellular vesicle-educated macrophages promote early Achilles tendon healing. Stem Cells 2019;37(5):652–662. DOI: 10.1002/stem.2988
  38. Quintero D, Perucca Orfei C, Kaplan LD, et al. The roles and therapeutic potential of mesenchymal stem/stromal cells and their extracellular vesicles in tendinopathies. Front Bioeng Biotechnol 2023;11:1040762. DOI: 10.3389/fbioe.2023.1040762
  39. Kasula V, Padala V, Gupta N, et al. The use of extracellular vesicles in Achilles tendon repair: a systematic review. Biomedicines 2024;12(5):942. DOI: 10.3390/biomedicines12050942
  40. Lyu K, Liu T, Chen Y, et al. A “cell-free treatment” for tendon injuries: adipose stem cell-derived exosomes. Eur J Med Res 2022;27(1):75. DOI: 10.1186/s40001-022-00707-x
  41. Fang WH, Agrawal DK, Thankam FG. “Smart exosomes”: a smart approach for tendon regeneration. Tissue Eng Part B Rev 2022;28(3):613–625. DOI: 10.1089/ten.TEB.2021.0075
  42. Wellings EP, Huang TCT, Li J, et al. Intrinsic tendon regeneration after application of purified exosome product: an in vivo study. Orthop J Sports Med 2021;9(12):23259671211062929. DOI: 10.1177/23259671211062929
  43. Zhu Y, Yan J, Zhang H, et al. Bone marrow mesenchymal stem cell–derived exosomes: a novel therapeutic agent for tendon-bone healing (review). Int J Mol Med 2023;52(6):121. DOI: 10.3892/ijmm.2023.5324
  44. Qin B, Bao D, Liu Y, et al. Engineered exosomes: a promising strategy for tendon-bone healing. J Adv Res 2023:S2090-1232(23)00348-X. DOI: 10.1016/j.jare.2023.11.011
  45. Zou J, Yang W, Cui W, et al. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. J Nanobiotechnology 2023;21(1):14. DOI: 10.1186/s12951-023-01778-6
  46. Wu R, Li H, Sun C, et al. Exosome-based strategy for degenerative disease in orthopedics: recent progress and perspectives. J Orthop Translat 2022;36:8–17. DOI: 10.1016/j.jot.2022.05.009
  47. Cobelli NJ, Leong DJ, Sun HB. Exosomes: biology, therapeutic potential, and emerging role in musculoskeletal repair and regeneration. Ann N Y Acad Sci 2017;1410(1):57–67. DOI: 10.1111/nyas.13469
  48. Asgarpour K, Shojaei Z, Amiri F, et al. Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages. Cell Commun Signal 2020;18(1):149. DOI: 10.1186/s12964-020-00650-6
  49. Citro V, Clerici M, Boccaccini AR, et al. Tendon tissue engineering: an overview of biologics to promote tendon healing and repair. J Tissue Eng 2023;14:20417314231196275. DOI: 10.1177/20417314231196275
  50. Ramires LC, Jeyaraman M, Muthu S, et al. Application of orthobiologics in Achilles tendinopathy: a review. Life (Basel) 2022;12(3):399. DOI: 10.3390/life12030399
  51. Kim HI, Park J, Zhu Y, et al. Recent advances in extracellular vesicles for therapeutic cargo delivery. Exp Mol Med 2024;56(4):836–849. DOI: 10.1038/s12276-024-01201-6
  52. Chen SH, Chen ZY, Lin YH, et al. Extracellular vesicles of adipose-derived stem cells promote the healing of traumatized Achilles tendons. Int J Mol Sci 2021;22(22):12373. DOI: 10.3390/ijms222212373
  53. Chen S, Saeed AFUH, Liu Q, et al. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 2023;8(1):207. DOI: 10.1038/s41392-023-01452-1
  54. Li P, Liu C, Yu Z, et al. New insights into regulatory T cells: exosome- and non-coding RNA-mediated regulation of homeostasis and resident treg cells. Front Immunol 2016;7:574. DOI: 10.3389/fimmu.2016.00574
  55. Jeyaraman M, Muthu S, Jeyaraman N. Challenges in the clinical translation of exosomal therapy in regenerative medicine. Regen Med 2022;17(4):193–197. DOI: 10.2217/rme-2022-0003
  56. Consumer Alert on Regenerative Medicine Products Including Stem Cells and Exosomes. FDA. Published online April 9, 2024. Accessed July 15, 2024. https://www.fda.gov/vaccines-blood-biologics/consumers-biologics/consumer-alert-regenerative-medicine-products-including-stem-cells-and-exosomes
  57. Cheng K, Kalluri R. Guidelines for clinical translation and commercialization of extracellular vesicles and exosomes based therapeutics. Extracellular Vesicle 2023;2:100029. DOI: 10.1016/j.vesic.2023.100029
  58. Chen YS, Lin EY, Chiou TW, et al. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Tzu Chi Med J 2020;32(2):113–120. DOI: 10.4103/tcmj.tcmj_182_19
  59. Sharma A, Yadav A, Nandy A, et al. Insight into the functional dynamics and challenges of exosomes in pharmaceutical innovation and precision medicine. Pharmaceutics 2024;16(6):709. DOI: 10.3390/pharmaceutics16060709
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.