Journal of Foot and Ankle Surgery (Asia Pacific)

Register      Login

VOLUME 10 , ISSUE S1 ( August, 2023 ) > List of Articles

ORIGINAL RESEARCH

Role of Small Posterior Malleolar Fragment in Ankle Stability: A Biomechanical Cadaveric Study Using an Indigenously Developed Universal Testing Machine

Sushruth Jagadish, Ronak N Kotian

Keywords : Ankle stability, Biomechanical study, Fragment size, Posterior malleolar fracture

Citation Information :

DOI: 10.5005/jp-journals-10040-1308

License: CC BY-NC 4.0

Published Online: 03-10-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Background: Posterior malleolar fragment (PMF) occurs in 7–44% of all ankle fractures. The integrity of the posterior malleolus and its ligamentous attachments is important for tibiotalar load transfer, posterior talar stability, and rotatory stability. No consensus exists on the minimum size of PMF that requires fixation. The purpose of this study is to investigate biomechanically the effect of fixing small PMF (<25% of tibial plafond) and its effect on ankle stability. Materials and methods: A total of 22 cadaveric ankle specimens were studied. They were divided into three groups according to the percentage of osteotomy performed—group I (20–30% of articular surface), group II (30–40%), and group III (40–50%). Ankles were subjected to axial loading using an indigenously developed machine with serial monitoring, load at which the fragment displacement, or posterior talar subluxation happened was noted. Internal fixation of fragment was done according to Arbeitsgemeinschaft für Osteosynthesefragen (AO) principles and subjected to load to check for fragment displacement or posterior talar subluxation. Results: The mean prefixation load which caused the posterior talar subluxation or the fragment displacement was lower (507.60 ± 104.99 N) in group III compared to group I (1156.00 ± 172.15 N). The mean postfixation load was 1882.88 ± 75.59, 1739.00 ± 109.03, and 1313.60 ± 356.00 N in groups I, II, and III, respectively. The mean difference in load (postfixation minus prefixation) in group I was 742.44 ± 133.98, 996.00 ± 108.23 N in group II, and 806.00 ± 257.08 N in group III. The difference in prefixation and postfixation load was statistically significant in all the three groups with p-value of <0.001. Conclusion: Fixation of PMF, irrespective of the size or percentage of articular surface involvement, leads to better ankle stability. Clinical significance: Fixation of small PMF (<25% of the articular surface) will lead to better ankle stability and early rehabilitation.


PDF Share
  1. Irwin TA, Lien J, Kadakia AR. Posterior malleolus fracture. J Am Acad Orthop Surg 2013;21(1):32–40. DOI: 10.5435/JAAOS-21-01-32
  2. Ogilvie-Harris DJ, Reed SC, Hedman TP. Disruption of the ankle syndesmosis: biomechanical study of the ligamentous restraints. Arthroscopy 1994;10(5):558–560. DOI: 10.1016/s0749-8063(05)80014-3
  3. Zhang K, Jia X, Qiang M, et al. Quantitative evaluation of articular involvement of posterior malleolus associated with operative indication: a comparative study of six methods based on radiography and CT. Biomed Res Int 2020;2020:6745626. DOI: 10.1155/2020/6745626
  4. Court-Brown CM, Caesar B. Epidemiology of adult fractures: a review. Injury 2006;37(8):691–697. DOI: 10.1016/j.injury.2006.04.130
  5. Jaskulka RA, Ittner G, Schedl R. Fractures of the posterior tibial margin: their role in the prognosis of malleolar fractures. J Trauma 1989;29(11):1565–1570. DOI: 10.1097/00005373-198911000-00018
  6. Court-Brown CM, McBirnie J, Wilson G. Adult ankle fractures–an increasing problem? Acta Orthop Scand 1998;69(1):43–47. DOI: 10.3109/17453679809002355
  7. Tenenbaum S, Shazar N, Bruck N, et al. Posterior malleolus fractures. Orthop Clin North Am 2017;48(1):81–89. DOI: 10.1016/j.ocl.2016.08.004
  8. Koval KJ, Lurie J, Zhou W, et al. Ankle fractures in the elderly: what you get depends on where you live and who you see. J Orthop Trauma 2005;19(9):635–639. DOI: 10.1097/01.bot.0000177105.53708.a9
  9. Boraiah S, Gardner MJ, Helfet DL, et al. High association of posterior malleolus fractures with spiral distal tibial fractures. Clin Orthop Relat Res 2008;466(7):1692–1698. DOI: 10.1007/s11999-008-0224-5
  10. Kukkonen J, Heikkilä JT, Kyyrönen T, et al. Posterior malleolar fracture is often associated with spiral tibial diaphyseal fracture: a retrospective study. J Trauma 2006;60(5):1058–1060. DOI: 10.1097/01.ta.0000196700.74272.10
  11. Haraguchi N, Armiger RS. Mechanism of posterior malleolar fracture of the ankle: a cadaveric study. OTA Int 2020;3(2):e060. DOI: 10.1097/OI9.0000000000000060
  12. Bartoníček J, Rammelt S, Tuček M, et al. Posterior malleolar fractures of the ankle. Eur J Trauma Emerg Surg 2015;41(6):587–600. DOI: 10.1007/s00068-015-0560-6
  13. Heim U. Indikation und Technik der stabilisierung des hinteren kantendreiecks nach volkmann bei malleolarfrakturen [indications and technic for the stabilization of the posterior volkmann's triangle in malleolar fractures]. Unfallheilkunde 1982;85(9):388–394.
  14. McDaniel WJ, Wilson FC. Trimalleolar fractures of the ankle. An end result study. Clin Orthop Relat Res 1977;(122):37–45.
  15. De Vries JS, Wijgman AJ, Sierevelt IN, et al. Long-term results of ankle fractures with a posterior malleolar fragment. J Foot Ankle Surg 2005;44(3):211–217. DOI: 10.1053/j.jfas.2005.02.002
  16. Weber M, Ganz R. Malunion following trimalleolar fracture with posterolateral subluxation of the talus–reconstruction including the posterior malleolus. Foot Ankle Int 2003;24(4):338–344. DOI: 10.1177/107110070302400406
  17. Gardner MJ, Brodsky A, Briggs SM, et al. Fixation of posterior malleolar fractures provides greater syndesmotic stability. Clin Orthop Relat Res 2006;447:165–171. DOI: 10.1097/01.blo.0000203489.21206.a9
  18. Langenhuijsen JF, Heetveld MJ, Ultee JM, et al. Results of ankle fractures with involvement of the posterior tibial margin. J Trauma 2002;53(1):55–60. DOI: 10.1097/00005373-200207000-00012
  19. Miller AN, Carroll EA, Parker RJ, et al. Direct visualization for syndesmotic stabilization of ankle fractures. Foot Ankle Int 2009;30(5):419–426. DOI: 10.3113/FAI-2009-0419
  20. Raasch WG, Larkin JJ, Draganich LF. Assessment of the posterior malleolus as a restraint to posterior subluxation of the ankle. J Bone Joint Surg Am 1992;74(8):1201–1206.
  21. McKinley TO, Rudert MJ, Koos DC, et al. Incongruity versus instability in the etiology of posttraumatic arthritis. Clin Orthop Relat Res 2004;(423):44–51. DOI: 10.1097/01.blo.0000131639.89143.26
  22. Streubel PN, McCormick JJ, Gardner MJ. The posterior malleolus: should it be fixed and why? Curr Orthop Pract 2011;22(1):17–24. DOI: 10.1097/BCO.0b013e318205a7c1
  23. Evers J, Fischer M, Zderic I, et al. The role of a small posterior malleolar fragment in trimalleolar fractures: a biomechanical study. Bone Joint J 2018;100-B(1):95–100. DOI: 10.1302/0301-620X.100B1.BJJ-2017-0435.R1
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.