Journal of Foot and Ankle Surgery (Asia Pacific)

Register      Login

VOLUME 8 , ISSUE 4 ( October-December, 2021 ) > List of Articles

Symposium: Complex Injuries Around The Ankle

Pathomechanics of Syndesmotic Injuries

Pilar Martínez de Albornoz, Manuel Monteagudo

Keywords : Ankle fractures, Biomechanics, Foot and ankle, Syndesmosis

Citation Information : de Albornoz PM, Monteagudo M. Pathomechanics of Syndesmotic Injuries. J Foot Ankle Surg Asia-Pacific 2021; 8 (4):162-167.

DOI: 10.5005/jp-journals-10040-1194

License: CC BY-NC 4.0

Published Online: 20-10-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Syndesmotic injuries have gained interest in recent years since they are present in 13% of ankle fractures and up to 20% of ankle sprains. The clinical suspicion of these injuries should lead the surgeon to ask for 3D-computed tomography images to avoid misdiagnosed injuries that may change management planning. The concept of dynamic joint stabilization is important, and overall knowledge of anatomy, biomechanics of a healthy and pathological syndesmosis will provide an objective starting point to improve diagnosis, mechanical repair, and rehabilitation. This review highlights basic and advanced biomechanical concepts, an update of the scientific evidence, and laboratory results with clinical outcomes for a better comprehension of treatment options.


PDF Share
  1. Vosseller JT, Karl JW, Greisberg JK. Incidence of syndesmotic injury. Orthopedics 2014;37(3):e226. DOI: 10.3928/01477447-20140225-53.
  2. Hunt KJ, George E, Harris AH, et al. Epidemiology of syndesmosis injuries in intercollegiate football: incidence and risk factors from National collegiate athletic association injury surveillance system data 2004-2005 to 2008-2009. Clin J Sport Med 2013;23(4):278–282. DOI: 10.1097/JSM.0b013e31827ee829.
  3. Waterman BR, Belmont PJ, Cameron KL, et al. Risk factors for syndesmotic and medial ankle sprain: role of sex, sport, and level of competition. Am J Sports Med 2011;39(5):992–998. DOI: 10.1177/0363546510391462.
  4. https://www.ncbi.nlm.nih.gov/pubmed.
  5. Hermans JJ, Beumer A, de Jong TAW, et al. Anatomy of the distal tibiofibular syndesmosis in adults: a pictorial essay with multimodality approach. J Anat 2010;217(6):633–645. DOI: 10.1111/j.1469-7580.2010.01302.x.
  6. Perry J. Gait analysis: normal and pathological function. Thorofare (New Jersey): Slack 1992;12(6):815. DOI: 10.1097/01241398-199211000-00023.
  7. Ogilvie-Harris DJ, Reed SC, Hedman TP. Disruption of the ankle syndesmosis: biomechanical study of the ligamentous restraints. Arthroscopy 1994;10(5):558–560. DOI: 10.1016/s0749-8063(05)80014-3.
  8. Clanton TO, Williams BT, Backus JD, et al. Biomechanical analysis of the individual ligament contributions to syndesmotic stability. Foot Ankle Int 2017;38(1):66–75. DOI: 10.1177/1071100716666277.
  9. Kelikian H, Kelikian S. Disorders of the ankle. Philadelphia: W.B. Saunders Company; 1985. pp. 4–8.
  10. Hunt KJ, Goeb Y, Behn AW, et al. Ankle joint contact load and displacement with progressive syndesmotic injury. Foot Ankle Int 2015;36(9):1095–1103. DOI: 10.1177/1071100715583456.
  11. Harris J, Fallat L. Effects of isolated Weber B fibular fractures on the tibiotalar contact area. J Foot Ankle Surg 2004;43(1):3–9. DOI: 10.1053/j.jfas.2003.11.008.
  12. Ramsey PL, Hamilton W. Changes in tibiotalar area of contact caused by lateral talar shift. J Bone Joint Surg 1976;58-A(3):356–357. DOI: 10.2106/00004623-197658030-00010.
  13. Doughtie M. Syndesmotic ankle sprains in football: a survey of national football league athletic trainers. J Athl Train 1999;34(1):15–18.
  14. Haraguchi N, Armiger RS. A new interpretation of the mechanism of ankle fracture. J Bone Joint Surg Am 2009;91(4):821–829. DOI: 10.2106/JBJS.G.01288.
  15. Xu D, Wang Y, Jiang C, et al. Strain distribution in the anterior inferior tibiofibular ligament, posterior inferior tibiofibular ligament, and interosseous membrane using digital image correlation. Foot Ankle Int 2018;39(5):618–628. DOI: 10.1177/1071100717753160.
  16. Van de Perre S, Vanhoenacker FM, De Vuyst D, et al. Imaging anatomy of the ankle. JBR-BTR 2004;87(6):310–314.
  17. Warner SJ, Garner MR, Schottel PC, et al. Analysis of PITFL injuries in rotationally unstable ankle fractures. Foot Ankle Int 2015;36(4):377–382. DOI: 10.1177/1071100714558845.
  18. Sagi HC, Shah AR, Sanders RW. The functional consequence of syndesmotic joint malreduction at a minimum 2-year follow-up. J Orthop Trauma 2012;26(7):439–443. DOI: 10.1097/BOT.0b013e31822a526a.
  19. Bartonícek J. Anatomy of the tibiofibular syndesmosis and its clinical relevance. Surg Radiol Anat 2003;25(5–6):379–386. DOI: 10.1007/s00276-003-0156-4.
  20. Fong Mak M, Stern R, Assal M. Repair of syndesmosis injury in ankle fractures: current state of the art. EOR 2018;3:24–29.
  21. Clanton TO, Whitlow SR, Williams BT, et al. Biomechanical comparison of 3 current ankle syndesmosis repair techniques. Foot Ankle Int 2017;38(2):200–207. DOI: 10.1177/1071100716666278.
  22. Miller MA, McDonald TC, Graves ML, et al. Stability of the syndesmosis after posterior malleolar fracture fixation. Foot Ankle Int 2018;39(1):99–104. DOI: 10.1177/1071100717735839.
  23. Bartoníček J, Rammelt S, Tuček M. Posterior malleolar fractures: changing concepts and recent developments. Foot Ankle Clin 2017;22(1):125–145. DOI: 10.1016/j.fcl.2016.09.009.
  24. Vacas-Sánchez E, Olaya-González C, Abarquero-Diezhandino A, et al. How to address the posterior malleolus in ankle fractures? A decision-making model based on the computerised tomography findings. Int Orthop 2020;44(6):1177–1185. DOI: 10.1007/s00264-020-04481-5.
  25. Abarquero-Diezhandino A, Luengo-Alonso G, Alonso-Tejero D, et al. Study of the relation between the posterior malleolus fracture and the development of osteoarthritis. Rev Esp Cir Ortop Traumatol 2020;64(1):41–49. DOI: 10.1016/j.recote.2019.11.002.
  26. Schottel PC, Baxter J, Gilbert S, et al. Anatomic ligament repair restores ankle and syndesmotic rotational stability as much as syndesmotic screw fixation. J Orthop Trauma 2016;30(2):e36–e40. DOI: 10.1097/BOT.0000000000000427.
  27. La Mothe JM, Baxter JR, Murphy C, et al. Three-dimensional analysis of fibular motion after fixation of syndesmotic injuries with a screw or suturebutton construct. Foot Ankle Int 2016;37(12):1350–1356. DOI: 10.1177/1071100716666865.
  28. Kwon JY, Cronin P, Velasco B, et al. Evaluation and significance of mortise instability in supination external rotation fibula fractures: a review article. Foot Ankle Int 2018;39(7):865–873. DOI: 10.1177/1071100718768509.
  29. Malhotra K, Welck M, Cullen N, et al. The effects of weight bearing on the distal tibiofibular syndesmosis: a study comparing weight bearing-CT with conventional CT. Foot Ankle Surg 2018(4). DOI: 10.1016/j.fas.2018.03.006.
  30. Hsu AR, Gross CE, Lee S. Intraoperative O-arm computed tomography evaluation of syndesmotic reduction: case report. Foot Ankle Int 2013;34(5):753–759. DOI: 10.1177/1071100712468872.
  31. Lintz F, Netto C, Barg A, et al. Weight-bearing cone beam CT scans in the foot and ankle. EFORT Open Rev 2018;3(5):278–286. DOI: 10.1302/2058-5241.3.170066.
  32. Lee JS, Curnutte B, Pan K, et al. Biomechanical comparison of suture-button, bioabsorbable screw, and metal screw for ankle syndesmotic repair: a meta-analysis. Foot Ankle Surg 2021;27(2):117–122. DOI: 10.1016/j.fas.2020.03.008.
  33. Grassi A, Samuelsson K, D'Hooghe P, et al. Dynamic stabilization of syndesmosis injuries reduces complications and reoperations as compared with screw fixation: a meta-analysis of randomized controlled trials. Am J Sports Med 2020;48(4):1000–1013. DOI: 10.1177/0363546519849909.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.