Journal of Foot and Ankle Surgery (Asia Pacific)

Register      Login

VOLUME 8 , ISSUE 4 ( October-December, 2021 ) > List of Articles

Symposium: Complex Injuries Around The Ankle

Is Ankle Post-traumatic Osteoarthritis Inevitable after Malleolar Fractures?

Alexandre L Godoy-Santos, Mario Herrera-Pérez, Cesar de Cesar Netto, André Wajnsztejn, Vincenzo Giordano

Citation Information : Godoy-Santos AL, Herrera-Pérez M, Netto CD, Wajnsztejn A, Giordano V. Is Ankle Post-traumatic Osteoarthritis Inevitable after Malleolar Fractures?. J Foot Ankle Surg Asia-Pacific 2021; 8 (4):180-187.

DOI: 10.5005/jp-journals-10040-1195

License: CC BY-NC 4.0

Published Online: 20-10-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

The tibiotalar joint is one of the most prevalent intra-articular fracture sites in the human body, resulting in high rates of post-traumatic ankle osteoarthritis (PTOA). Studies have shown multifactorial causes for PTOA and highlight the importance of three determining factors for clinical outcomes after malleolar fracture: quality of joint reduction and fracture fixation, residual ligament instability, and initial damage to joint tissues—including chondral tissue, synovial tissue, and synovial fluid. This special article summarizes recent evidence of malleolar fractures treatment, with a main focus on important factors related to improve clinical outcomes in order to avoid post-traumatic ankle osteoarthritis (OA).


HTML PDF Share
  1. Waterman BR, Owens BD, Davey S, et al. The epidemiology of ankle sprains in the United States. J Bone Joint Surg Am 2010;92(13):2279–2284. DOI: 10.2106/JBJS.I.01537.
  2. Court-Brown CM, Caesar B. Epidemiology of adult fractures: a review. Injury 2006;37(8):691–697. DOI: 10.1016/j.injury.2006.04.130.
  3. Bugler KE, Clement ND, Duckworth AD, et al. Open ankle fractures: who gets them and why? Arch Orthop Trauma Surg 2015;135(3):297–303. DOI: 10.1007/s00402-014-2140-3.
  4. Elsoe R, Ostgaard SE, Larsen P. Population-based epidemiology of 9767 ankle fractures. Foot Ankle Surg 2018;24(1):34–39. DOI: 10.1016/j.fas.2016.11.002.
  5. Miller AN, Paul O, Boraiah S, et al. Functional outcomes after syndesmotic screw fixation and removal. J Orthop Trauma 2010;24(1):12–16. DOI: 10.1097/BOT.0b013e3181c6e199.
  6. Goldberg AJ, MacGregor A, Dawson J, et al. The demand incidence os symptomatic ankle osteoarthritis presenting to foot and ankle surgeons in the United Kingdom. Foot (Edin) 2012;22(3):163–166. DOI: 10.1016/j.foot.2012.02.005.
  7. Valderrabano V, Horisberger M, Russell I, et al. Etiology of ankle osteoarthritis. Clin Orthop Relat Res 2009;467(7):1800–1806. DOI: 10.1007/s11999-008-0543-6.
  8. Aurich M, Squires GR, Reiner A, et al. Differential matrix degradation and turnover in early cartilage lesions of human knee and ankle joints. Arthritis Rheum 2005;52(1):112–119. DOI: 10.1002/art.20740.
  9. Treppo S, Koepp H, Quan EC, et al. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J Orthop Res 2000;18(5):739–748. DOI: 10.1002/jor.1100180510.
  10. Pott P. Some few general remarks on fractures and dislocations. 1758. Clin Orthop Relat Res 2007;458:40–41. DOI: 10.1097/BLO.0b013e31803dd063.
  11. Lane WA. The classic: the operative treatment of fractures. 1909. Clin Orthop Relat Res 2009;467(8):1944–1947.
  12. Broos PL, Bisschop AP. Operative treatment of ankle fractures in adults: correlation between types of fracture and final results. Injury 1991;22(5):403–406. DOI: 10.1016/0020-1383(91)90106-o.
  13. Aiyer AA, Zachwieja EC, Lawrie CM, et al. Management of isolated lateral malleolus fractures. J Am Acad Orthop Surg 2019;27(2):50–59. DOI: 10.5435/JAAOS-D-17-00417.
  14. Thordarson DB, Motamed S, Hedman T, et al. The effect of fibular malreduction on contact pressures in an ankle fracture malunion model. J Bone Joint Surg Am 1997;79(12):1809–1815. DOI: 10.2106/00004623-199712000-00006.
  15. Giordano V, Boni G, Godoy-Santos AL, et al. Nailing the fibula: alternative or standard treatment for lateral malleolar fracture fixation? A broken paradigm. Eur J Trauma Emerg Surg 2020. DOI: 10.1007/s00068-020-01337-wEpub ahead of print.
  16. Herscovici D, Scaduto JM, Infante A. Conservative treatment of isolated fractures of the medial malleolus. J Bone Joint Surg [Br] 2007;89-B:89–93.
  17. Müller ME, Nazarian S, Koch P, et al. The comprehensive classification of fractures of long bones. Springer-Verlag; 1990.
  18. Carter TH, Duckworth AD, White TO. Medial malleolar fractures: current treatment concepts. Bone Joint J 2019;101-B(5):512–521. DOI: 10.1302/0301-620x.101B5.BJJ-2019-0070.
  19. Lareau CR, Bariteau JT, Paller DJ, et al. Contribution of the medial malleolus to tibiotalar joint contact characteristics. Foot Ankle Spec 2015;8(1):23–28. DOI: 10.1177/1938640014546862.
  20. Winters K. Functional outcome of surgery for fractures of the ankle. N Z Med J 2009;122(1289):57–62.
  21. Day GA, Swanson CE, Hulcombe BG. Operative treatment of ankle fractures: a minimum ten-year follow-up. Foot Ankle Int 2017;22:102–106.
  22. Lounsbury BF, Metz AR. Lipping fracture of lower articular end of tibia. Arch Surg 1922;5(3):678–690. DOI: 10.1001/archsurg.1922.01110150231010.
  23. Leveuf J. Traitment Des Fractures Et Luxations Des Membres. Paris: Masson; 1925.
  24. Bartonícek J, Rammelt S, Tucek M. Posterior malleolar fractures: changing concepts and recent developments. Foot Ankle Clin 2017;22(1):125–145. DOI: 10.1016/j.fcl.2016.09.009.
  25. Baumbach SF, Herterich V, Damblemont A, et al. Open reduction and internal fixation of the posterior malleolus fragment frequently restores syndesmotic stability. Injury 2019;50(2):564–570. DOI: 10.1016/j.injury.2018.12.025.
  26. https://surgeryreference.aofoundation.org/orthopedic-trauma/adult-trauma/malleoli.
  27. Rammelt S, Obruba P. An update on the evaluation and treatment of syndesmotic injuries. Eur J Trauma Emerg Surg 2015;41(6):601–614. DOI: 10.1007/s00068-014-0466-8.
  28. Gardner MJ, Brodsky A, Briggs SM, et al. Fixation of posterior malleolar fractures provides greater syndesmotic stability. Clin Orthop Relat Res 2006;447:165–171. DOI: 10.1097/01.blo.0000203489.21206.a9.
  29. Rammelt S, Zwipp H, Mittlmeier T. Operative treatment of pronation fracture-dislocations of the ankle [German]. Operat Orthop Traumatol 2013;25(3):273–291. DOI: 10.1007/s00064-013-0235-6.
  30. Weber M. Trimalleolar fractures with impaction of the posteromedial tibial plafond: implications for talar stability. Foot Ankle Int 2004;25(10):716–727. DOI: 10.1177/107110070402501005.
  31. Harper MC, Hardin G. Posterior malleolar fractures of the ankle associated with external rotation-abduction injuries: results with and without internal fixation. J Bone Joint Surg Am 1988;70(9):1348–1356. DOI: 10.2106/00004623-198870090-00012.
  32. Haper MC. Instability of the distal tibiofibular syndesmosis after bimalleolar and trimalleolar ankle fractures. J Bone Joint Surg Am 1984;66(8):1319–1320. DOI: 10.2106/00004623-198466080-00028.
  33. Tornetta P. Competence of the deltoid ligament in bimalleolar ankle fractures after medial malleolar fixation. J Bone Joint Surg Am 2000;82(6):843–848. DOI: 10.2106/00004623-200006000-00011.
  34. van den Bekerom MP, Mutsaerts EL, van Dijk CN. Evaluation of the integrity of the deltoid ligament in supination external rotation ankle fractures: a systematic review of the literature. Arch Orthop Trauma Surg 2009;129(2):227–235. DOI: 10.1007/s00402-008-0768-6.
  35. Stoffel K, Wysocki D, Baddour E, et al. Comparison of two intraoperative assessment methods for injuries to the ankle syndesmosis. A cadaveric study. J Bone Joint Surg Am 2009;91(11):2646–2652. DOI: 10.2106/JBJS.G.01537.
  36. Monga P, Kumar A, Simons A, et al. Management of distal tibio-fibular syndesmotic injuries: a snapshot of current practice. Acta Orthop Belg 2008;74(3):365–369.
  37. Cotton F. Fractures and joint dislocations. Philadelphia, PA: WB Saunders; 1910. p. 549.
  38. Mizel MS. Technique tip: a revised method of the cotton test for intra-operative evaluation of syndesmotic injuries. Foot Ankle Int 2003;24(1):86–87. DOI: 10.1177/107110070302400115.
  39. Krähenbühl N, Weinberg MW, Davidson NP, et al. Imaging in syndesmotic injury: a systematic literature review. Skeletal Radiol 2018;47(5):631–648. DOI: 10.1007/s00256-017-2823-2.
  40. Candal-Couto JJ, Burrow D, Bromage S, et al. Instability of the tibio-fibular syndesmosis: have we been pulling in the wrong direction? Injury 2004;35(8):814–818. DOI: 10.1016/j.injury.2003.10.013.
  41. Xenos JS, Hopkinson WJ, Mulligan ME, et al. The tibiofibular syndesmosis. Evaluation of the ligamentous structures, methods of fixation, and radiographic assessment. J Bone Joint Surg Am 1995;77(6):847–856. DOI: 10.2106/00004623-199506000-00005.
  42. de Cesar Netto C, Pinto M, Roberts L, et al. Intraoperative tap test for coronal syndesmotic instability: a cadaveric study. Injury 2018;49(10):1758–1762. DOI: 10.1016/j.injury.2018.08.005.
  43. Pakarinen H, Flinkkila T, Ohtonen P, et al. Intraoperative assessment of the stability of the distal tibiofibular joint in supination-external rotation injuries of the ankle: sensitivity, specificity, and reliability of two clinical tests. J Bone Joint Surg Am 2011;93(22):2057–2061. DOI: 10.2106/JBJS.J.01287.
  44. Hermans JJ, Wentink N, Beumer A, et al. Correlation between radiological assessment of acute ankle fractures and syndesmotic injury on MRI. Skelet Radiol 2012;41(7):787–801. DOI: 10.1007/s00256-011-1284-2.
  45. Høiness P, Stromsøe K. Tricortical versus quadricortical syndesmosis fixation in ankle fractures: a prospective, randomized study comparing two methods of syndesmosis fixation. J Orthop Trauma 2004;18(6):331–337. DOI: 10.1097/00005131-200407000-00001.
  46. Wikerøy AKB, Høiness PR, Andreassen GS, et al. No difference in functional and radiographic resuts 8.4 years after quadricortical compared with tricortical syndesmosis fixation in ankle fractures. J Orthop Trauma 2010;24(1):17–23. DOI: 10.1097/BOT.0b013e3181bedca1.
  47. Beumer A, Campo MM, Niesing R, et al. Screw fixation of the syndesmosis: a cadaver model comparing stainless steel and titanium screws and three and four cortical fixation. Injury 2005;36(1):60–64. DOI: 10.1016/j.injury.2004.05.024.
  48. Moore JA. Jr, Shank JR, Morgan SJ, et al. Syndesmosis fixation: a comparison of three and four cortices of screw fixation without hardware removal. Foot Ankle Int 2006;27(8):567–572. DOI: 10.1177/107110070602700801.
  49. Kukreti S, Faraj A, Miles JN. Does position of syndesmotic screw affect functional and radiological outcome in ankle fractures? Injury 2005;36(9):1121–1124. DOI: 10.1016/j.injury.2005.01.014.
  50. Ahmad J, Raikin SM, Pour AE, et al. Bioabsorbable screw fixation of the syndesmosis in unstable ankle injuries. Foot Ankle Int 2009;30(2):99–105. DOI: 10.3113/FAI-2009-0099.
  51. Hovis WD, Kaiser BW, Watson JT, et al. Treatment of syndesmotic disruptions of the ankle with bioabsorbable screw fixation. J Bone Joint Surg Am 2002;84-A:26–31.
  52. Thordarson DB, Samuelson M, Shepherd LE, et al. Bioabsorbable versus stainless steel screw fixation of the syndesmosis in pronation-lateral rotation ankle fractures: a prospective randomized trial. Foot Ankle Int 2001;22(4):335–338. DOI: 10.1177/107110070102200411.
  53. Hansen M, Le L, Wertheimer S, et al. Syndesmosis fixation: analysis of shear stress via axial load on 3.5-mm and 4.5-mm quadricortical syndesmotic screws. J Foot Ankle Surg 2006;45(2):65–69. DOI: 10.1053/j.jfas.2005.12.004.
  54. Thompson MC, Gesink DS. Biomechanical comparison of syndesmosis fixation with 3.5- and 4.5-millimeter stainless steel screws. Foot Ankle Int 2000;21(9):736–741. DOI: 10.1177/107110070002100904.
  55. Gardner R, Yousri T, Holmes F, et al. Stabilization of the syndesmosis in the maisonneuve fracture–a biomechanical study comparing 2-hole locking plate and quadricortical screw fixation. J Orthop Trauma 2013;27(4):212–216. DOI: 10.1097/BOT.0b013e31825cfac2.
  56. Verim O, Serhan Er M, Altinel L, et al. Biomechanical evaluation of syndesmotic screw position: a finite-element analysis. J Orthop Trauma 2014;28(4):210–215. DOI: 10.1097/BOT.0b013e3182a6df0a.
  57. McBryde A, Chiasson B, Wilhelm A, et al. Syndesmotic screw placement: a biomechanical analysis. Foot Ankle Int 1997;18(5):262–266. DOI: 10.1177/107110079701800503.
  58. Seitz WH, Bachner EJ, Abram LJ, et al. Repair of the tibio-fibular syndesmosis with a flexible implant. J Orthop Trauma 1991;5(1):78–82. DOI: 10.1097/00005131-199103000-00014.
  59. Klitzman R, Zhao H, Zhang LQ, et al. Suture-button versus screw fixation of the syndesmosis: a biomechanical analysis. Foot Ankle Int 2010;31(1):69–75. DOI: 10.3113/FAI.2010.0069.
  60. Thornes B, Walsh A, Hislop M, et al. Suture-endobutton fixation of ankle tibio-fibular diastasis: a cadaver study. Foot Ankle Int 2003;24(2):142–146. DOI: 10.1177/107110070302400208.
  61. Thornes B, Shannon F, Guiney AM, et al. Suture-button syndesmosis fixation: accelerated rehabilitation and improved outcomes. Clin Orthop Relat Res 2005;431(431):207–212. DOI: 10.1097/01.blo.0000151845.75230.a0.
  62. Schepers T. Acute distal tibiofibular syndesmosis injury: a systematic review of suture-button versus syndesmotic screw repair. Int Orthop 2012;36(6):1199–1206. DOI: 10.1007/s00264-012-1500-2.
  63. Naqvi GA, Cunningham P, Lynch B, et al. Fixation of ankle syndesmotic injuries: comparison of tightrope fixation and syndesmotic screw fixation for accuracy of syndesmotic reduction. Am J Sports Med 2012;40(12):2828–2835. DOI: 10.1177/0363546512461480.
  64. Earll M, Wayne J, Brodrick C, et al. Contribution of the deltoid ligament to ankle joint contact characteristics: a cadaver study. Foot Ankle Int 1996;17(6):317–324. DOI: 10.1177/107110079601700604.
  65. Rasmussen O, Kromann-Andersen C, Boe S. Deltoid ligament: Functional analysis of the medial collateral ligamentous apparatus of the ankle joint. Acta Orthop Scand 1983;54(1):36–44. DOI: 10.3109/17453678308992867.
  66. Clarke HJ, Michelson JD, Cox QG, et al. Tibio-talar stability in bimalleolar ankle fractures: a dynamic in vitro contact area study. Foot Ankle 1991;11(4):222–227. DOI: 10.1177/107110079101100407.
  67. Harper MC. An anatomic study of the short oblique fracture of the distal fibula and ankle stability. Foot Ankle 1983;4(1):23–29. DOI: 10.1177/107110078300400106.
  68. McConnell T, Creevy W, Tornetta P. Stress examination of supination external rotation-type fibular fractures. J Bone Joint Surg Am 2004;86-A:2171–2178.
  69. DeAngelis NA, Eskander MS, French BG. Does medial tenderness predict deep deltoid ligament incompetence in supination external rotation type ankle fractures? J Orthop Trauma 2007;21(4):244–247. DOI: 10.1097/BOT.0b013e3180413835.
  70. Baird RA, Jackson ST. Fractures of the distal part of the fibula with associated disruption of the deltoid ligament: treatment without repair of the deltoid ligament. J Bone Joint Surg Am 1987;69(9):1346–1352. DOI: 10.2106/00004623-198769090-00007.
  71. Park SS, Kubiak EN, Egol KA, et al. Stress radiographs after ankle fracture: the effect of ankle position and deltoid ligament status on medial clear space measurements. J Orthop Trauma 2006;20(1):11–18. DOI: 10.1097/01.bot.0000189591.40267.09.
  72. Michelson JD, Varner KE, Checcone M. Diagnosing deltoid injury in ankle fractures: the gravity stress view. Clin Orthop Relat Res 2001(387):178–182. DOI: 10.1097/00003086-200106000-00024.
  73. Nortunen S, Lepojärvi S, Savola O, et al. Stability assessment of the ankle mortise in supination-external rotation-type ankle fractures: lack of additional diagnostic value of MRI. J Bone Joint Surg Am 2014;96(22):1855–1862. DOI: 10.2106/JBJS.M.01533.
  74. Warner SJ, Garner MR, Hinds RM, et al. Correlation between the Lauge- Hansen classification and ligament injuries in ankle fractures. J Orthop Trauma 2015;29(12):574–578. DOI: 10.1097/BOT.0000000000000393.
  75. Salameh M, Alhammoud A, Alkhatib N, et al. Outcome of primary deltoid ligament repair in acute ankle fractures: a meta-analysis of comparative studies. Int Orthop 2020;44(2):341–347. DOI: 10.1007/s00264-019-04416-9.
  76. Dabash S, Elabd A, Potter E, et al. Adding deltoid ligament repair in ankle fracture treatment: is it necessary? a systematic review. Foot Ankle Surg 2019 Dec;25(6):714–720. DOI: 10.1016/j.fas.2018.11.001.
  77. Pountos I, Giannoudis PV. Articular impaction injuries in the lower limb. EFORT Open Rev 2017;2(5):250–260. DOI: 10.1302/2058-5241.2.160072.
  78. Dingle JT, Page Thomas DP, King B, et al. In vivo studies of articular tissue damage mediated by catabolin/interleukin 1. Ann Rheum Dis 1987;46(7):527–533. DOI: 10.1136/ard.46.7.527.
  79. Dingle JT. Catabolin-A cartilage catabolic factor from synovium. Clin Orthop Relat Res 1981;156(156):219–231. DOI: 10.1097/00003086-198105000-00033.
  80. Adams SB, Setton LA, Bell RD, et al. Inflammatory cytokines and matrix metalloproteinases in the synovial fluid after intra-articular ankle fracture. Foot Ankle Int 2015;36(11):1264–1271. DOI: 10.1177/1071100715611176.
  81. Adams SB, Reilly RM, Huebner JL, et al. Time-dependent effects on synovial fluid composition during the acute phase of human intra-articular ankle fracture. Foot Ankle Int 2017;38(10):1055–1063. DOI: 10.1177/1071100717728234.
  82. Adams SB, Leimer EM, Setton LA, et al. Inflammatory microenvironment persists after bone healing in intra-articular ankle fractures. Foot Ankle Int 2017;38(5):479–484. DOI: 10.1177/1071100717690427.
  83. Godoy-Santos AL, Ranzoni L, Teodoro WR, et al. Increased cytokine levels and histological changes in cartilage, synovial cells and synovial fluid after malleolar fractures. Injury 2017;48(Suppl 4):S27–S33.
  84. Leimer EM, Tanenbaum LM, Nettles DL, et al. Amino acid profile of synovial fluid following intra-articular ankle fracture. Foot Ankle Int 2018;39(10):1169–1177. DOI: 10.1177/1071100718786163.
  85. Hügle T, Geurts J. What drives osteoarthritis?-synovial versus subchondral bone pathology. Rheumatology (Oxford) 2017;56(9):1461–1471. DOI: 10.1093/rheumatology/kew389.
  86. Liu-Bryan R. Synovium and the innate inflammatory network in osteoarthritis progression. Curr Rheumatol Rep 2013;15(5):323. DOI: 10.1007/s11926-013-0323-5.
  87. Kapoor M, Martel-Pelletier J, Lajeunesse D, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 2011;7(1):33–42. DOI: 10.1038/nrrheum.2010.196.
  88. Catterall J, Stabler T, Flannery C, et al. Changes in serum and synovial fluid biomarkers after acute injury. Arthritis Res Ther 2010;12(6):R229. DOI: 10.1186/ar3216.
  89. Akella SV, Regatte RR, Gougoutas AJ, et al. Proteoglycan-induced changes in T1rho-relaxation of articular cartilage at 4T. Magn Reson Med 2001;46(3):419–423. DOI: 10.1002/mrm.1208.
  90. Menezes NM, Gray ML, Hartke JR, et al. T2 and T1rho MRI in articular cartilage systems. Magn Reson Med 2004;51(3):503–509. DOI: 10.1002/mrm.10710.
  91. Williams A, Qian Y, Bear D, et al. Assessing degeneration of human articular cartilage with ultra-short echo time (UTE) T2* mapping. Osteoarthritis Cartilage 2010;18(4):539–546. DOI: 10.1016/j.joca.2010.02.001.
  92. Chu CR, Williams AA, West RV, et al. Quantitative magnetic resonance imaging UTE-T2* mapping of cartilage and meniscus healing after anatomic anterior cruciate ligament reconstruction. Am J Sports Med 2014;42(8):1847–1856. DOI: 10.1177/0363546514532227.
  93. Barg A, Pagenstert GI, Hügle T, et al. Ankle osteoarthritis: etiology, diagnostics, and classification. Foot Ankle Clin 2013;18(3):411–426. DOI: 10.1016/j.fcl.2013.06.001.
  94. Pagenstert GI, Barg A, Leumann AG, et al. SPECT-CT imaging in degenerative joint disease of the foot and ankle. J Bone Joint Surg Br 2009;91(9):1191–1196. DOI: 10.1302/0301-620X.91B9.22570.
  95. Zhou B, Chen D, Xu H, et al. Proliferation of rabbit chondrocyte and inhibition of IL-1b-induced apoptosis through MEK/ERK signaling by statins. In Vitro Cell Dev Biol Anim 2017;53(2):124–131. DOI: 10.1007/s11626-016-0086-1.
  96. Pountos I, Giannoudis PV, Jones E, et al. NSAIDS inhibit in vitro MSC chondrogenesis but not osteogenesis: implications for mechanism of bone formation inhibition in man. J Cell Mol Med 2011;15(3):525–534. DOI: 10.1111/j.1582-4934.2010.01006.x.
  97. Jeffrey JE, Aspden RM. Cyclooxygenase inhibition lowers prostaglandin E2 release from articular cartilage and reduces apoptosis but not proteoglycan degradation following an impact load in vitro. Arthritis Res Ther 2007;9(6):R129. DOI: 10.1186/ar2346.
  98. Euppayo T, Siengdee P, Buddhachat K, et al. Effects of low molecular weight hyaluronan combined with carprofen on canine osteoarthritis articular chondrocytes and cartilage explants in vitro. In Vitro Cell Dev Biol Anim 2015;51(8):857–865. DOI: 10.1007/s11626-015-9908-9.
  99. Pascual Garrido C, Hakimiyan AA, Rappoport L, et al. Anti-apoptotic treatments prevent cartilage degradation after acute trauma to human ankle cartilage. Osteoarthritis Cartilage 2009;17(9):1244–1251. DOI: 10.1016/j.joca.2009.03.007.
  100. Moussa M, Lajeunesse D, Hilal G, et al. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage. Exp Cell Res 2017;352(1):146–156. DOI: 10.1016/j.yexcr.2017.02.012.
  101. Delco ML, Kennedy JG, Bonassar LJ, et al. Post-traumatic osteoarthritis of the ankle: a distinct clinical entity requiring new research approaches. J Orthop Res 2017;35(3):440–453. DOI: 10.1002/jor.23462.
  102. Anderson DD, Chubinskaya S, Guilak F, et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res 2011;29(6):802–809. DOI: 10.1002/jor.21359.
  103. Lotz MK, Kraus VB. New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther 2010;12(3):211–211. DOI: 10.1186/ar3046.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.