Journal of Foot and Ankle Surgery (Asia Pacific)

Register      Login

VOLUME 8 , ISSUE 2 ( April-June, 2021 ) > List of Articles

Original Article

Stress Fractures: A Growing Concern during the COVID-19 Pandemic

Khalis Boksh, Linzy Houchen-Wolloff, Aqua Asif, Neelam Mangwani, Jitendra Mangwani

Keywords : Ankle joint, COVID-19, Foot injuries, Risk factors, Sports, Stress fracture, Trauma

Citation Information : Boksh K, Houchen-Wolloff L, Asif A, Mangwani N, Mangwani J. Stress Fractures: A Growing Concern during the COVID-19 Pandemic. J Foot Ankle Surg Asia-Pacific 2021; 8 (2):80-85.

DOI: 10.5005/jp-journals-10040-1157

License: CC BY-NC 4.0

Published Online: 00-06-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

During coronavirus disease-2019 (COVID-19) pandemic, public health measures to encourage social distancing have been implemented, including a temporary shutdown of gyms, organized sports, and social activities. Although such policies have helped contain the virus, they have had a secondary effect on the increasing incidence of patients presenting with stress fractures in the lower limb. This is mainly due to the environmental restrictions from the COVID-19 crisis, leading to suboptimal conditions in exercise performance. We present an overview on this topic for healthcare professionals in primary and secondary care and our recommendations for its management during the COVID-19 pandemic and beyond.


PDF Share
  1. Fayad LM, Kamel IR, Kawamoto S, et al. Distinguishing stress fractures from pathologic fractures: a multimodality approach. Skelet Radiol 2005;34(5):245–259. DOI: 10.1007/s00256-004-0872-9.
  2. Niva MH, Mattila VM, Kiuru MJ, et al. Bone stress injuries are common in female military trainees: a preliminary study. Clin Orthop Relat Res 2009;467(11):2962–2969. DOI: 10.1007/s11999-009-0851-5.
  3. Carmont RC, Mei-Dan O, Bennell LK. Stress fracture management: current classification and new healing modalities. Oper Tech Sports Med 2009;17(2):81–89. DOI: 10.1053/j.otsm.2009.05.004.
  4. Schneiders AG, Sullivan SJ, Hendrick PA, et al. The ability of clinical tests to diagnose stress fractures: a systematic review and meta-analysis. J Orthop Sports Phys Ther 2012;42(9):760–771. DOI: 10.2519/jospt.2012.4000.
  5. Rice WL, Meyer C, Lawhon B, et al. The COVID-19 pandemic is changing the way people recreate outdoors. SocArXiv 2020. 1–15.
  6. Royer M, Thomas T, Cesini J, et al. Stress fractures in 2011: practical approach. Joint Bone Spine 2012;79(Suppl. 2):S86–90. DOI: 10.1016/S1297-319X(12)70013-1.
  7. Snyder RA, Koester MC, Dunn WR. Epidemiology of stress fractures. Clin Sports Med 2006;25(1):37–52. DOI: 10.1016/j.csm.2005.08.005.
  8. Bolin D, Kemper A, Brolinson G. Current concepts in the evaluation and management of stress fractures. Curr Rep Sport Med 2005;4(6):295–300. DOI: 10.1097/01.CSMR.0000306289.98127.23.
  9. Mori S, Burr DB. Increasing intracortical remodelling following fatigue damage. Bone 1993;14(2):103–109. DOI: 10.1016/8756-3282(93)90235-3.
  10. Bennell KL, Malcolm SA, Thomas SA, et al. The incidence and distribution of stress fractures in competitive track and field athletes. A twelve-month prospective study. Am J Sports Med 1996;24(2):211–217. DOI: 10.1177/036354659602400217.
  11. Jones BH, Bovee MW, Harris JM, et al. Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am J Sports Med 1993;21(5):705–710. DOI: 10.1177/036354659302100512.
  12. Raasch WG, Hergan DJ. Treatment of stress fractures: the fundamentals. Clin Sports Med 2006;25(1):29–36. DOI: 10.1016/j.csm.2005.08.013.
  13. Korpelainen R, Orava S, Karpakka J, et al. Risk factors for recurrent stress fracture in athletes. Am J Sports Med 2001;29(3):304–310. DOI: 10.1177/03635465010290030901.
  14. Joy EA, Campbell D. Stress fractures in the female athlete. Curr Sports Med Rep 2005;4(6):323–328. DOI: 10.1097/01.CSMR.0000306294.72578.a8.
  15. Gardner LIJr, Dziados JE, Jones BH, et al. Prevention of lower extremity stress fractures: a controlled trial of a shock absorbent insole. Am J Public Health 1988;78(12):1563–1567. DOI: 10.2105/AJPH.78.12.1563.
  16. Dominski FH, Brandt R. Do the benefits of exercise in indoor and outdoor environments during the COVID-19 pandemic outweigh the risks of infection? Sports Sci Health 2020;6(3):583–588. DOI: 10.1007/s11332-020-00673-z.
  17. World Health Organization, Europe (2020) Stay physically active during self-quarantine. http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/novel-coronavirus-2019-ncov-technical-guidance/stay-physically-active-during-self-quarantine. Accessed 21 November 2020.
  18. Saita Y. Risk/caution of vitamin D insufficiency for quarantined athletes returning to play after COVID-19. BMJ Open Sport Exerc Med 2020;6(1):e000882. DOI: 10.1136/bmjsem-2020-000882.
  19. Evans RK, Antczak AJ, Lester M, et al. Effects of a 4-month recruit training program on markers of bone metabolism. Med Sci Sports Exerc 2008;40(Suppl. 11):S660–S670. DOI: 10.1249/MSS.0b013e318189422b.
  20. Cosman F, Ruffing J, Zion M, et al. Determinants of stress fractures risk in United States military academy cadets. Bone 2013;55(2):359–366. DOI: 10.1016/j.bone.2013.04.011.
  21. Manioli A2nd, Graham B. The subtle cavus foot: the under pronator: a review. Foot Ankle Int 2005;26(3):256–263. DOI: 10.1177/107110070502600313.
  22. Pohl MB, Mullineaux DR, Milner CE, et al. Biomechanical predictors of retrospective tibial stress fractures in runners. J Biochem 2008;41(6):1160–1165. DOI: 10.1016/j.jbiomech.2008.02.001.
  23. Romani WA, Perrin DH, Dussault RG, et al. Identification of tibial stress fractures using therapeutic continuous ultrasound. J Orthop Sports Phys Ther 2000;30(8):444–452. DOI: 10.2519/jospt.2000.30.8.444.
  24. Ishibashi Y, Okamura Y, Otsuka H, et al. Comparison of scintigraphy and magnetic resonance imaging for stress injuries of bone. Clin J Sport Med 2002;12(2):79–84. DOI: 10.1097/00042752-200203000-00003.
  25. Marshall RA, Mandell JC, Weaver MJ, et al. Imagine features and management of stress, atypical and pathologic fractures. Radiographics 2018;38(7):2173–2192. DOI: 10.1148/rg.2018180073.
  26. Mulligan ME. The “gray cortex”: an early sign of stress fracture. Skeletal Radiol 1995;24(3):201–203. DOI: 10.1007/BF00228923.
  27. Dixon S, Newton J, Teh J. Stress fractures in the young athlete: a pictorial review. Curr Probl Diagn Radiol 2011;40(1):29–44. DOI: 10.1067/j.cpradiol.2009.12.001.
  28. Anderson MW, Greenspan A. Stress fractures. Radiology 1996;199(1):1–12. DOI: 10.1148/radiology.199.1.8633129.
  29. Wright AA, Hegedus EJ, Lenchik L, et al. Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med 2016;44(1):255–263. DOI: 10.1177/0363546515574066.
  30. Daffner RH. Stress fractures: current concepts. Skel Radiol 1978;2(4):221–229. DOI: 10.1007/BF00347398.
  31. Daffner RH, Martinez S, Gehweiler JA. Stress fractures in runners. JAMA 1982;367(7):1039–1041. DOI: 10.1001/jama.1982.03320320067039.
  32. Shin AY, Morin WD, Germany JD, et al. The superiority of magnetic resonance imaging in differentiating the cause of hip pain in endurance athletes. Am J Sports Med 1996;24(2):168–176. DOI: 10.1177/036354659602400209.
  33. Sofka CM. Imaging of stress fractures. Clin Sports Med 2006;25(1):53–62. DOI: 10.1016/j.csm.2005.08.009.
  34. Fredericson M, Jennings F, Beaulieu C, et al. Stress fractures in athletes. Top Magn Reson Imaging 2006;17(5):309–325. DOI: 10.1097/RMR.0b013e3180421c8c.
  35. Fredericson M, Bergman AG, Hoffman KL, et al. Tibial stress reaction in runners: correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med 1995;23(4):472–481. DOI: 10.1177/036354659502300418.
  36. McMahon CJ, Shetty SK, Anderson ME, et al. Case report: longitudinal stress fracture of the humerus: imaging features and pitfalls. Clin Orthop Relat Res 2009;467(12):3351–3355. DOI: 10.1007/s11999-009-0970-z.
  37. Arendt EA, Griffiths HJ. The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med 1997;16(2):291–306. DOI: 10.1016/S0278-5919(05)70023-5.
  38. Belkin SC. Stress fractures in athletes. Orthop Clin North Am 1980;11(4):735–742. DOI: 10.1016/S0030-5898(20)31434-6.
  39. Koplan JP, Powell KE, Sikes RK, et al. An epidemiologic study of the benefits and risks of running. JAMA 1982;248(23):3118–3121. DOI: 10.1001/jama.1982.03330230030026.
  40. Macera CA, Pate RR, Powell KE, et al. Predicting lower extremity injuries among habitual runners. Arch Intern Med 1989;149(11):2565–2568. DOI: 10.1001/archinte.1989.00390110117026.
  41. Milgrom C, Giladi M, Simkin A, et al. An analysis of the biomechanical mechanism of tibial stress fractures among Israeli infantry recruits: a prospective study. Clin Orthop 1988;231(231):216–221. DOI: 10.1097/00003086-198806000-00028.
  42. Mehallo CJ, Drezner JA, Bytomski JR. Practical management: non-steroidal anti-inflammatory drug (NSAID) use in athletic injuries. Clin J Sport Med 2006;16(2):170–174. DOI: 10.1097/00042752-200603000-00015.
  43. Wheeler P, Batt ME. Do non-steroidal anti-inflammatory drugs adversely affect stress fracture healing? A short review. Br J Sports Med 2005;39(2):65–69. DOI: 10.1136/bjsm.2004.012492.
  44. Johansson C, Ekenman I, Tornkvist H, et al. Stress fractures of the femoral neck in athletes: the consequence of a delay in diagnosis. Am J Sports Med 1990;18(5):524–528. DOI: 10.1177/036354659001800514. 54.
  45. Bennet MH, Stanford R, Turner R. Hyperbaric oxygen therapy for promoting fracture healing and treating fracture non union. Cochrane Database Syst Rev 2005;25(1):CD004712.
  46. Hammond JW, Hinton RY, Curl LA, et al. Use of autologous platelet rich plasma to treat muscle strain injuries. Am J Sports Med 2009;37(6):1135–1142. DOI: 10.1177/0363546508330974.
  47. Saxena A, Fullem B, Hannaford D. Results of treatment of 22 navicular stress fractures and a new proposed radiographic classification system. J Foot Ankle Surg 2000;39(2):96–103. DOI: 10.1016/S1067-2516(00)80033-2.
  48. Bikle DD. Vitamin D and bone. Curr Osteoporos Rep 2010;10(2):151–159. DOI: 10.1007/s11914-012-0098-z.
  49. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008;3(Supplement 3):S131–S139. DOI: 10.2215/CJN.04151206.
  50. Anderson PH, Lam NN, Turner AG, et al. The pleiotropic effects of vitamin D in bone. J Steroid Biochem Mol Biol 2013;6(136):190–194. DOI: 10.1016/j.jsbmb.2012.08.008.
  51. Pereira M, Dantas Damascena A, Galvão Azevedo LM, et al. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr 2020;4:1–9. DOI: 10.1080/10408398.2020.1841090.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.